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Introduction

• Mold slag entrainment is a challenge to the production of clean steel

• This work develops a numerical model to predict slag entrainment

9 mechanisms of slag entrainment:

1. Top surface fluctuations
2. Meniscus freezing/hook formation
3. Vortex formation in the wake of the SEN
4. Shear-layer instability
5. Upward flow impinging upon the top surface
6. Argon bubble interactions/slag foaming
7. Slag crawling down the SEN
8. Top surface stationary wave instability
9. Top surface “balding”

Hibbeler and Thomas, Iron and Steel Tech., 2013
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Evaluation of 
Previous Work
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Previous Theoretical Work

Shear Instability Criterion

Kelvin, Phil. Mag., 1871
Helmholtz, Preuss. Akad. Berlin, 1868

x
Iguchi et al., ISIJ Int., 2000

Feldbauer, PhD Thesis, 1995
Harman and Cramb, Steelmaking Conf., 1996
Hagemann et al., Met Trans B, 2013

Savolainen et al., ISIJ Int., 2009

Krishnapisharody and Irons, AISTech 2008

Xiao et al., Chin. J .Metal Sci. Tech., 1987
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Asai, Proc. 100th and 101st Nishiyama
Mem. Lec. ,1984 

Previous Theoretical Work

Droplet Energy Criterion

x
Iguchi et al., ISIJ Int., 2000

Feldbauer, PhD Thesis, 1995
Harman and Cramb, Steelmaking Conf., 1996
Hagemann et al., Met Trans B, 2013

Savolainen et al., ISIJ Int., 2009

Krishnapisharody and Irons, AISTech 2008

Xiao et al., Chin. J .Metal Sci. Tech., 1987
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Harman and Cramb, 79th Steelmaking 
Conf. Proc., 1996

Previous Experimental Work

Hose Apparatus

x
Iguchi et al., ISIJ Int., 2000

Feldbauer, PhD Thesis, 1995
Harman and Cramb, Steelmaking Conf., 1996
Hagemann et al., Met Trans B, 2013

Savolainen et al., ISIJ Int., 2009

Krishnapisharody and Irons, AISTech 2008

Xiao et al., Chin. J .Metal Sci. Tech., 1987
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Hagemann et al., Met Trans B, 2013 

Previous Experimental Work

Rotating Cylinder Apparatus

x
Iguchi et al., ISIJ Int., 2000

Feldbauer, PhD Thesis, 1995
Harman and Cramb, Steelmaking Conf., 1996
Hagemann et al., Met Trans B, 2013

Savolainen et al., ISIJ Int., 2009

Krishnapisharody and Irons, AISTech 2008

Xiao et al., Chin. J .Metal Sci. Tech., 1987
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Xiao et al., Chin. J .Metal Sci. Tech., 1987

Previous Experimental Work

Ladle-like Apparatus

x
Iguchi et al., ISIJ Int., 2000

Feldbauer, PhD Thesis, 1995
Harman and Cramb, Steelmaking Conf., 1996
Hagemann et al., Met Trans B, 2013

Savolainen et al., ISIJ Int., 2009

Krishnapisharody and Irons, AISTech 2008

Xiao et al., Chin. J .Metal Sci. Tech., 1987
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Comparison of Proposed Criteria

Typical Properties Derived Quantities

Fluid
Mass

Density
Dynamic 

Shear Viscosity
Kinematic 

Shear Viscosity
Interfacial

Tension 
Capillary

Wavelength
Characteristic

Velocity
Characteristic

Time

ρ μ ν Γ λc Vc tc

(kg/m3) (mPa·s) (mm2/s) (mN/m) (mm) (m/s) (s)

Oil 960 50 52.1
30 56.4 0.132 0.427

Water 997 0.9 1.00

Slag 2500 300 120
1100 30.7 0.256 0.120

Steel 7200 5 0.694
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Comparison of Proposed Criteria

Critical Velocity (m/s)

System
Shear

Instability
Droplet
Energy Hose

Rotating
Cylinder Ladle-like

Oil-Water 0.12 0.15 0.096 0.10 0.20

Slag-Steel 0.49 0.79 0.56 0.73 0.63

Lack of agreement among existing criteria motivates the 
need for more fundamental models

• Typical properties of oil, water, slag, and steel were used to compare criteria
• See previous slide for values of density, viscosity, and surface tension
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Previous Numerical Work

Jonsson and Jönsson, 
ISIJ Int., 1996 Hibbeler et al., Proc. 7th ECCC, 2011

Krishnapisharody and Irons, 
EPD Congress, 2008

2D VOF

DNSk-ε Turbulence Model Jet eddy viscosity
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Previous Numerical Work

Ramp Apparatus

Sulasalmi et al., ISIJ Int., 2009 Senguttuvan and Irons, AISTech 2013 

3D VOF

LESLES

Savolainen et al., ISIJ Int., 2009 
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Current Model Description

A 3D, transient, multiphase, turbulent numerical model has 
been developed using FLUENT to predict entrainment

Key Features Include:

• Explicit time marching 

• Volume-of-fluid method with geometric-reconstruction scheme

• SST k-ω turbulence model with low Reynolds number correction and 
turbulence damping at the interface

• Mesh with about 100,000 cells with a cell length of about 2 mm
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Model Verification
with Analytical Solutions
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Laminar Tangential Annular Drag Flow

• Test problem proved the model could correctly 
relate velocities to pressures and shear stresses

• Analytical solution to laminar flow was matched
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• Turbulent conditions also were explored

• As velocity increases boundary layer shrinks

• 5 RANS turbulence models are in close agreement

Turbulent Tangential Annular Drag Flow
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This test problem proved the model correctly simulates an interface

Multiphase Axially-Rotating Cylinder
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1.0 mm cells 0.6 mm cells 0.4 mm cells 0.2 mm cells

Phase contours of air from 0.01 to 0.99

Multiphase Axially-Rotating Cylinder

Mesh Refinement Study

• Geo-reconstruct scheme keeps interface
3 cells wide regardless of mesh size
– Need about 10 cells to fully resolve a droplet
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Model Validation
with Experimental Data
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Experimental data used from rotating cylinder apparatus

Hagemann et al., Met Trans B, 2013 

Rotating Cylinder Apparatus

Domain and Boundary Conditions
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Numerical Simulation Phase Contours (Oil 2)

Photographs of Experiment

Rotating Cylinder Apparatus

Results (Side View)
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• With proper interpretation the model agreed well with the experiments

• Finger-like protrusions were seen in both simulations and experiments

Numerical Simulation Oil Layer Iso-Surface (Oil 2)

Rotating Cylinder Apparatus

Results (End View)



University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • Kenneth Swartz • 23

Rotating Cylinder Apparatus

Critical Angular Velocities

• For the two less viscous oils the model agrees well with the data 
• Within 5% for closed tank and within 10% for open tank

• For the two more viscous oils the oil layer splits into two distinct 
sections and entrainment is not simulated 

Open Tank (No-Shear Top Wall)Closed Tank (No-Slip Top Wall)
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Conclusions

• A transient, 3D, multiphase, turbulent numerical model was 
developed using a relatively coarse mesh

• Model was verified with two test problems and validated with 
experimental data

• More work is needed to:
– Accurately resolve and predict droplet size
– Resolve the droplet accumulation in corners of tank
– Correctly simulate more viscous oils

• Model using these techniques will be used in the future 
to predict slag entrainment in continuous steel casting
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