

CCC Annual Report UIUC, August 20, 2014

Validation of Modeling Methodology for Slag Entrainment

Kenneth E. Swartz **BSME Student**

tinuous

asting

onsortium

Lance C. Hibbeler **Postdoctoral Research Fellow**

Department of Mechanical Science & Engineering University of Illinois at Urbana-Champaign

Introduction

- Mold slag entrainment is a challenge to the production of clean steel
- This work develops a numerical model to predict slag entrainment

9 mechanisms of slag entrainment:

- 1. Top surface fluctuations
- 2. Meniscus freezing/hook formation
- 3. Vortex formation in the wake of the SEN
- 4. Shear-layer instability
- 5. Upward flow impinging upon the top surface
- 6. Argon bubble interactions/slag foaming
- 7. Slag crawling down the SEN
- 8. Top surface stationary wave instability
- 9. Top surface "balding"

Hibbeler and Thomas, Iron and Steel Tech., 2013

2

Comparison of Proposed Criteria

Tinuous Casting Consortium

inuous Casting

sortium

Typical Properties				Derived Quantities			
<u>Fluid</u>	Mass <u>Density</u>	Dynamic <u>Shear Viscosity</u>	Kinematic <u>Shear Viscosity</u>	Interfacial <u>Tension</u>	Capillary <u>Wavelength</u>	Characteristic <u>Velocity</u>	Characteristic <u>Time</u>
	ρ	μ	v	Г	$\lambda_{ m c}$	$V_{\rm c}$	t _c
	(kg/m³)	(mPa·s)	(mm²/s)	(mN/m)	(mm)	(m/s)	(s)
Oil	960	50	52.1	Interfacial <u>ity</u> <u>Tension</u> Γ (mN/m) 30 1100 V _c = als Processing Simul	56.4	0.132	0.407
Water	997	0.9	1.00	30			0.427
Slag Steel	2500 7200	300 5	120 0.694	1100	30.7	0.256	0.120
$\lambda_{\rm c} = 2\pi \sqrt{\frac{\Gamma_{\rm u\ell}}{g\left(\rho_{\rm u} - \rho_{\ell}\right)}} \qquad V_{\rm c} = \sqrt[4]{\frac{g\Gamma_{\rm u\ell}}{\rho_{\rm u}}} \qquad t_{\rm c} = \frac{\lambda_{\rm c}}{V_{\rm c}}$							
Univers	$\lambda_{\rm c} = 2\pi \sqrt{\frac{\Gamma_{\rm u\ell}}{g\left(\rho_{\rm u} - \rho_{\ell}\right)}} \qquad V_{\rm c} = \sqrt[4]{\frac{g\Gamma_{\rm u\ell}}{\rho_{\rm u}}} \qquad t_{\rm c} = \frac{\lambda_{\rm c}}{V_{\rm c}}$ University of Illinois at Urbana-Champaign · Metals Processing Simulation Lab · Kenneth Swartz · 9						

Comparison of Proposed Criteria

Critical Velocity (m/s)

	Shear	Droplet		Rotating	
<u>System</u>	<u>Instability</u>	<u>Energy</u>	<u>Hose</u>	<u>Cylinder</u>	Ladle-like
Oil-Water	0.12	0.15	0.096	0.10	0.20
Slag-Steel	0.49	0.79	0.56	0.73	0.63

Lack of agreement among existing criteria motivates the need for more fundamental models

• Typical properties of oil, water, slag, and steel were used to compare criteria

See previous slide for values of density, viscosity, and surface tension

Previous Numerical Work

2D VOF

Current Model Description

A 3D, transient, multiphase, turbulent numerical model has been developed using FLUENT to predict entrainment

Key Features Include:

University of Illinois at Urbana-Champaign

- **Explicit** time marching
- Volume-of-fluid method with geometric-reconstruction scheme
- SST k-ω turbulence model with low Reynolds number correction and turbulence damping at the interface
- Mesh with about **100,000 cells** with a cell length of about **2 mm**

University of Illinois at Urbana-Champaign	•	Metals Processing Simulation Lab	•	Kenneth Swartz	•	13
lo/						
htinuous Castian						
Consortium						
IVIOD	el	Verifica	ITIC	DN		
with Ana	aľ	vtical Sc	DU	itions		
		,				

Metals Processing Simulation Lab

Kenneth Swartz

14

inuous asting Consortium

Laminar Tangential Annular Drag Flow

- Test problem proved the model could correctly relate velocities to pressures and shear stresses
- · Analytical solution to laminar flow was matched

Turbulent Tangential Annular Drag Flow

- Turbulent conditions also were explored
- · As velocity increases boundary layer shrinks
- 5 RANS turbulence models are in close agreement

16

Multiphase Axially-Rotating Cylinder nuous asting onso 80 $(R\Omega$ No Shear h(r) = H +70 Axial Coordinate z (mm) $\rho_{\rm II}, \mu_{\rm II}$ gH 60 Air tation No Slip 50 Axis of Ro 40 Water ρ_{ℓ}, μ_{ℓ} Hh(r)30 x^{ref} 0 10 20 30 40 50 No Shear Radial Coordinate r (mm) R This test problem proved the model correctly simulates an interface 17 University of Illinois at Urbana-Champaign Kenneth Swartz Metals Processing Simulation Lab **Multiphase Axially-Rotating Cylinder Mesh Refinement Study** nuous iting Geo-reconstruct scheme keeps interface 3 cells wide regardless of mesh size

– Need about 10 cells to fully resolve a droplet

Phase contours of air from 0.01 to 0.99

Model Validation with Experimental Data

- With proper interpretation the model agreed well with the experiments
- Finger-like protrusions were seen in both simulations and experiments

Conclusions

- A transient, 3D, multiphase, turbulent numerical model was developed using a relatively coarse mesh
- Model was verified with two test problems and validated with experimental data
- More work is needed to:
 - Accurately resolve and predict droplet size
 - Resolve the droplet accumulation in corners of tank
 - Correctly simulate more viscous oils

Model using these techniques will be used in the future to predict slag entrainment in continuous steel casting

· Complete references and model description in

K. E. Swartz, L. C. Hibbeler, B. P. Joyce, and B. G. Thomas, "Numerical Investigation of Slag Entrainment in Continuous Casting Molds." *Proceedings of AISTech 2014*, pg. 1865-1879.

University of Illinois at Urbana-Champaign

Acknowledgments

Metals Processing Simulation Lab

- Continuous Casting Consortium Members (ABB, ArcelorMittal, Baosteel, Magnesita Refractories, Nippon Steel and Sumitomo Metal Corp., Nucor Steel, Postech/ Posco, Severstal, SSAB, Tata Steel, ANSYS/ Fluent)
- Professor S. P. Vanka and Dr. Rui Liu for helpful discussions on the simulations

26

25

Kenneth Swartz